The generator matrix 1 0 0 0 1 1 1 X 0 1 1 X X^2 1 1 1 1 0 1 0 X^2+X X X^2 1 1 X^2+X 1 1 1 1 1 X X^2+X 1 1 1 1 0 1 X^2+X 1 X^2 1 1 1 0 1 1 0 1 0 0 1 X^2 X+1 1 X 1 X^2+1 1 1 X X^2+X X^2 X^2+X 1 X^2+X+1 1 1 X^2 X^2+X X+1 0 X^2+X 0 X^2+1 1 X^2+X+1 X 0 X^2 X^2+X+1 0 X^2+X+1 X^2+X 1 X^2+1 0 X 1 0 X^2+X 1 X^2+X X 0 0 0 1 0 1 X^2+1 X^2 X^2+1 1 X+1 0 X X^2+X+1 X^2 1 X^2+X X+1 X X^2+1 X^2+1 X^2+X 1 X X X^2 1 X^2+1 X+1 X^2+X+1 X X X^2+X 0 X+1 X^2+X X^2+X+1 X^2+1 X^2 X 1 X^2+1 1 X^2+X+1 X X^2 1 0 0 0 0 0 1 X^2 1 X^2+1 X^2+X+1 X+1 1 X X^2+1 X^2+X 1 X^2+X X^2+X+1 X^2 1 X^2+X X^2+1 X^2+X X^2+X 1 X+1 X X^2+X+1 X+1 0 X^2+X+1 X^2 X^2+X 1 1 X^2+X X X^2+X+1 X^2+1 X^2+X X^2+X+1 1 X^2 0 0 0 X^2+1 X^2+1 0 0 generates a code of length 48 over Z2[X]/(X^3) who´s minimum homogenous weight is 42. Homogenous weight enumerator: w(x)=1x^0+80x^42+276x^43+302x^44+468x^45+426x^46+494x^47+309x^48+384x^49+297x^50+396x^51+218x^52+196x^53+97x^54+54x^55+46x^56+24x^57+11x^58+12x^59+4x^60+1x^62 The gray image is a linear code over GF(2) with n=192, k=12 and d=84. This code was found by Heurico 1.11 in 0.188 seconds.